M1. (a)	.(a) (i) M1 (+) 4 OR IV							
			M2 (+) 6 OR VI	2				
				2				
		(
		(ii)	It / Chlorine has gained / accepted electron(s)					
			OR					
			Correctly balanced half-equation eg Cl₂ + 2e⁻ → 2Cl⁻ Credit 1 or 2 electrons but not lone pair. The idea of 'reduction' alone is not enough.					
				1				
		(b) (i)	$6\mathbf{K}\mathbf{I} + 7\mathbf{H}_{2}\mathbf{SO}_{4} \longrightarrow 6\mathbf{K}\mathbf{H}\mathbf{SO}_{4} + 3\mathbf{I}_{2} + \mathbf{S} + 4\mathbf{H}_{2}\mathbf{O}$	1				
		(ii)	$2l^{-} \longrightarrow l_{2} + 2e^{-}$					
			OR					
			$8l^{-} \longrightarrow 4l_{2} + 8e^{-}$					
			Ignore charge on the electron unless incorrect. Or multiples.					
			Credit the electrons being subtracted on the LHS. Ignore state symbols.					
				1				
		(iii)	H_2SO_4 + $8H^+$ + $8e^ \longrightarrow$ H_2S + $4H_2O$					
			OR					
			SO_4^{2-} + 10 H ⁺ + 8 e ⁻ \longrightarrow H ₂ S + 4 H ₂ O Ignore charge on the electron unless incorrect. Or multiples.					
			Credit the electrons being subtracted on the RHS. Ignore state symbols.					
				1				

(c) (i) Ag⁺ + I⁻ → AgI ONLY Ignore state symbols. Not multiples.

(ii) The precipitate / solid / it does not dissolve / is insoluble / remains

OR a white / cream / yellow solid / precipitate

OR stays the same

OR no (visible / observable) change

OR no effect / no reaction Ignore 'nothing (happens)'. Ignore 'no observation'.

- (iii) The silver nitrate is acidified to
 - react with / remove (an)ions that would interfere with the test Credit a correct reference to ions that give a 'false positive'.
 - prevent the formation of other <u>silver precipitates / insoluble silver</u> <u>compounds</u> that would interfere with the test Do not penalise an incorrect formula for an ion that is written in addition to the name.
 - remove (other) ions that react with the silver nitrate If only the formula of the ion is given, it must be correct.
 - react with / remove carbonate / hydroxide / sulfite (ions) Ignore 'sulfate'.
- (iv) HCl would <u>form a (white) precipitate / (white) solid</u> (with silver nitrate and this would interfere with the test)

It is not sufficient simply to state either that it will interfere **or** simply that the ions / compounds react to form AgCl

1

1

1

1

(d) (i) Any **one** from

Ignore 'to clean water'.

• to sterilise / disinfect water

Ignore 'water purification' and 'germs'.

- to destroy / kill microorganisms / bacteria / microbes / pathogens *Credit 'remove bacteria etc' / prevent algae.*
- (ii) The (health) benefit outweighs the risk

OR

a clear statement that once it has done its job, little of it remains

OR

used in (very) dilute concentrations / small amounts / low doses

(iii) $Cl_2 + H_2O \longrightarrow HCIO + HCI$ **OR** $Cl_2 + H_2O \longrightarrow 2H^+ + CIO^- + CI^-$ **OR** $2Cl_2 + 2H_2O \longrightarrow 4HCI + O_2$ *Credit HOCI or CIOH*

- Or multiples. Credit other ionic or mixed representations. Ignore state symbols.
- (e) In either order Both required for one mark only Credit correct ionic formulae.

NaClO (OR NaOCl) <u>and</u> NaCl Give credit for answers in equations unless contradicted.

[14]

1

1

1

1

M2.(a) $Pt|H_2|H^+||Fe^{2+}|Fe$

Allow 1 for correct order of symbols but lose second mark for a wrong phase boundary(s) / Pt missing / extra Pt on RHS,

additional phase boundary

Note, allow one mark only for correct symbol in reverse:

 $Fe|Fe^{2+}||H^+|H_2|Pt$ Allow dashed lines for salt bridge Ignore state symbols Ignore 2 if used before H⁺ 2 (b) Electron donor Allow (species that) loses electrons Do not allow reference to electron pairs 1 (c) CI_2 / chlorine If M1 blank or incorrect cannot score M2 1 (Species on RHS / electron donor) has most positive / largest E^o / has highest potential Do not allow reference to e.m.f. or E(cell) 1 (d) (i) CI / chlorine 1 (ii) Chlorine +1 to chlorine 0 CE if chlorine not identified in part (i) Allow chlorine +1 to chlorine −1 (in Cl-) Allow oxidation state decreases by one OR two Allow oxidation state changes by -1 OR -2 1 (e) $4HOCI + 4H^+ + 4OH^- \rightarrow 2CI_2 + O_2 + 6H_2O$ OR $4\text{HOCI} \rightarrow 2\text{CI}_2 + \text{O}_2 + 2\text{H}_2\text{O}$

Allow one mark for any incorrect equation that shows

2

(f) (i) e.m.f. = 0.40 - (-1.25) = 1.65 (V) / +1.65 (V) Allow -1.65 (V)

1

 (ii) 2Zn + O₂ → 2ZnO Allow multiples Ignore state symbols Do not allow uncancelled species If more than one equation given, choose the best

1

(iii) **A** / stainless lid If M1 incorrect or blank CE=0

1

- <u>O</u>₂ (electrode) has a more positive E° / <u>oxygen</u> (electrode) requires / gains electrons from external circuit
 - Or reference to the overall equation and a link to electrons going into A
 - Allow oxygen is reduced and reduction occurs at the positive electrode
- OR <u>Zinc</u> (electrode) has more negative *E*^o Do not allow reference to e.m.f. or *E*(cell)
- (iv) (Cell) reaction(s) cannot be reversed / zinc oxide cannot be reduced to zinc by passing a current through it / zinc cannot be regenerated
 Allow danger from production of gas / oxygen produced / hydrogen produced

1

[14]

M3. (a)	(i)	SiO₂	+	-	+ 2 C Ignore sta Credit mu		ols		2 CO					
				OR										
				SiO ₂	+ 2 CI	2 +	с —	→	SiCl₄ +		1			
			(ii)	 (ii) (fractional) distillation <i>OR</i> G(L)C or gas (–liquid–) chromatography 										
	G(L)C or gas (-iiquid-) chromatography													
		(b)	(i)		+ 2H ₂ Ignore sta Credit mu Penalise	ate symb Iltiples	ools	+	4HCI		1			
			(ii)	Reduc donor		: / reduct	tant / red	luces \$	SiCl₄ / reduce	s (silicon) / electron	1			
			(iii)	Explos	sion / expl	osive								
			. ,	OR	·									
	(highly) flammable / inflammable													
				OR										
				<u>readil</u>	<u>y</u> / <u>easily</u> i	gnites /	burns / c	ombu	sts		1			
											1			
		(c)												
	21	/IgO +		Si .		2 Mg +	⊦ S	iO₂						
							Page	7						

$$\mathbf{M4.}(a) \quad (i) \quad 3CuS(s) + \mathbf{8}HNO_{3}(aq) \longrightarrow \mathbf{3}CuSO_{4}(aq) + \mathbf{8}NO(g) + \mathbf{4}H_{2}O(l)$$

(ii) **(+)** 5 **(+)** 2

(iii) 4H⁺ + NO₃⁻ + 3e⁻ → 2H₂O + NO Ignore state symbols. Credit multiples of this equation only. Ignore absence of charge on the electron.

(iv) S²⁻ + 4H₂O → SO₄²⁻ + 8e⁻ + 8H⁺
 Ignore state symbols.
 Credit multiples of this equation only.
 Ignore absence of charge on the electron.

(b) M1 add <u>scrap / recycled / waste iron (or steel)</u> to the aqueous solution If M1 refers to iron / steel, but does not make it clear in the text that it is "scrap" / "waste" / "recycled", penalise M1 but mark on.

M2 the iron is a <u>more reactive</u> metal **OR** <u>Fe is a better reducing agent</u> Credit zinc or magnesium as an alternative to iron for **M2**, **M3** and **M4** only, penalising **M1**

M3 $\underline{Cu^{2^+}}$ / copper ions are reduced / gain electrons **OR** $\underline{Cu^{2^+}} + 2e^- \longrightarrow \underline{Cu}$ **OR** copper / Cu is displaced by Fe Ignore absence of charge on the electron. [6]

1

2

1

1

M5. (a) Ti is not produced

OR

TiC / carbide is produced OR titanium reacts with carbon

OR

Product is brittle

OR

Product is a poor engineering material Penalise "titanium carbonate" Ignore "impure titanium" Credit "it / titanium is brittle"

(b) (i) FeTiO₃ + 3½Cl₂+ 3C → FeCl₃ + TiCl₄ + 3CO Ignore state symbols Credit multiples

1

1

1

(ii) FeCl₃+ TiCl₄ + 7Na → 7NaCl + Fe + Ti

OR (for example)

- 2FeCl₃ + TiCl₄ + **10**Na → **10**NaCl + 2Fe + Ti Ignore state symbols Credit multiples including ratios other than 1:1 Ignore working
- (c) Either order

Penalise reference to incorrect number of electrons in M1

M1 The Cu2+ / copper(II) ions / they have gained (two) electrons

[9]

OR Cu²⁺ + 2^{e-} → Cu For M1, accept "copper" if supported by correct half-equation or simplest ionic equation
OR oxidation state / number decreases (or specified from 2 to 0) Ignore charge on the electron
M2 The Cu²⁺ / copper(II) ions / they have been reduced For M2 do not accept "copper" alone

2

1

1

2

[6]

 (d) 2O²⁻ → O₂ + 4^{e-} Or multiples including 3O²⁻ → 1.5 O₂ + 6^e Ignore state symbols Ignore charge on the electron Credit the electrons being subtracted on the LHS

M6. (a) $2Ca_5F(PO_4)_3 + 9SiO_2 + 15C \rightarrow 9CaSiO_3 + CaF_2 + 15CO + 6P$

(b) **M1** (P₄ =) **0**

M2 (H₃PO₄ =) **(+) 5** Accept Roman numeral V for **M2**

(c) H_2SO_4

Both numbers required

*M*_r = 2(1.00794) + 32.06550 + 4(15.99491) = **98.06102** or **98.0610** or **98.061** or **98.06** or **98.1** *Calculations not required*

<u>and</u>

 $H_{3}PO_{4}$

- *M*_r = 3(1.00794) + 30.97376 + 4(15.99491) = **97.97722** or **97.9772** or **97.977** or **97.98** or **98.0**
- (d) (i) A substance that <u>speeds up</u> a reaction OR <u>alters / increases the rate</u> of a reaction **AND** is <u>chemically unchanged at the end / not used up</u>.
 Both ideas needed Ignore reference to activation energy or alternative route.
 - (ii) The <u>addition of water</u> (QoL) to a molecule / compound
 QoL- for the underlined words
 - (iii) M1 CH₃CH=CH₂ + H₂O \longrightarrow CH₃CH(OH)CH₃

(C₃H₀)

For **M1** insist on correct structure for the alcohol but credit correct equations using either C_3H_6 or double bond not given.

M2 propan-2-ol

[8]

2

1

1